A second order numerical method for solving advection-diffusion models
نویسندگان
چکیده
منابع مشابه
A stable numerical method for solving variable coefficient advection-diffusion models
In a recent paper [E. Defez, R. Company, E. Ponsoda, L. Jódar, Aplicación del método CE-SE a la ecuación de adveccióndifusión con coeficientes variables, Congreso de Métodos Numéricos en Ingenierá (SEMNI), Granada, Spain, 2005] a modified space–time conservation element and solution element scheme for solving the advection–diffusion equation with time-dependent coefficients, is proposed. This e...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملA NEW MODIFIED HOMOTOPY PERTURBATION METHOD FOR SOLVING LINEAR SECOND-ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this paper, we tried to accelerate the rate of convergence in solving second-order Fredholm type Integro-differential equations using a new method which is based on Improved homotopy perturbation method (IHPM) and applying accelerating parameters. This method is very simple and the result is obtained very fast.
متن کاملGalerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines
In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
متن کاملA Piecewise Approximate Method for Solving Second Order Fuzzy Differential Equations Under Generalized Differentiability
In this paper a numerical method for solving second order fuzzy differential equations under generalized differentiability is proposed. This method is based on the interpolating a solution by piecewise polynomial of degree 4 in the range of solution. Moreover we investigate the existence, uniqueness and convergence of approximate solutions. Finally the accuracy of piecewise approximate method b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2009
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2009.05.009